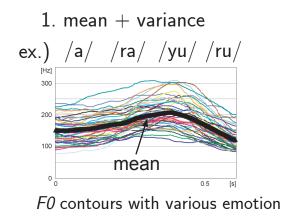
# EMOTIONAL SPEECH SYNTHESIS USING SUBSPACE CONSTRAINTS IN PROSODY


Shinya MORI <u>Tsuyoshi MORIYAMA</u> Shinji OZAWA Dept. of Information & Computer Science, Keio University, JAPAN

# Synthesis of emotional speech - past studies

| context    | Formant synthesis |  | Concatenative synthesis              |
|------------|-------------------|--|--------------------------------------|
| prosody    |                   |  | pros : natural<br>cons : only stored |
| Motivation |                   |  |                                      |

"How can you synthesize natural speech that conveys any kinds of emotion with their gradation?"

### Observation



2. the number of morae and the position of accent determine the variance

ex.)

/na<mark>na</mark>me/ (LHL) vs. /<mark>na</mark>niyorimo/ (HLLLL)

### Basic idea of the proposed method

- . PCA gives a statistical model for the motions in prosody
- . The model is trained for each combination of the number of morae and the position of accent

Subspace constrained generation of prosody

# Training phase

A male speaker tried lots of emotions (47) for each combination of the number of morae (2-6) and the position of accent

### Extract prosody and project into subspace

$$\mathbf{p}_{i} = [f_{i1}, f_{i2}, \dots, f_{iL}, a_{i1}, a_{i2}, \dots, a_{iL}, l_{i1}, l_{i2}, \dots, L_{in}], \qquad (1)$$

$$f \dots F0 \quad a \dots \text{ power} \quad l \dots \text{ mora length} \quad i \dots \text{ i-th training sample}$$

$$L \quad \text{speech length} \quad n \quad \text{the number of morae}$$

 $\mathbf{p}_{i} = \overline{\mathbf{p}} + \sum c_{j} * \mathbf{v}_{j}, \quad c_{j} \dots j\text{-th principal component score}$ (2)  $\mathbf{v}_{j} \dots \text{ eigen vector of } j\text{-th principal component}$ 

#### Evaluate emotional content by subjective experiment

$$\mathbf{e} = [e_1, ..., e_K], \quad K \dots \text{ the number of emotions}$$
(3)

#### Relate them

$$\mathbf{c} = \mathbf{R} \mathbf{e}, \quad \mathbf{R} \dots \text{ partial regression coefficients}$$
 (4)

Synthesis phase

$$e \xrightarrow{(4)} c \xrightarrow{(2)} p \xrightarrow{\text{TD-PSOLA}} \text{waveform} \begin{array}{c} v \text{ in } (2) \text{ and } \mathbf{R} \text{ in } (4) \\ depend \text{ on the word} \end{array}$$

## Results and Conclusion

- . "Anger", "surprise", "disgust", "sorrow", "boredom", "depression" were synthesized well.
- . Words not used in training were also synthesized well.